Mostrando entradas con la etiqueta CIENCIA y TECNOLOGÍA. Mostrar todas las entradas
Mostrando entradas con la etiqueta CIENCIA y TECNOLOGÍA. Mostrar todas las entradas

29 noviembre, 2023

LAS BATERÍAS DE ESTADO SÓLIDO

La evolución de la náutica de recreo tiende, al igual que otros sistemas de movilidad, a una mayor electrificación. La evolución de las baterías aplicadas a la movilidad están avanzando principalmente de mano de la electrificación de los automóviles y de los vehículos de movilidad personal (VMP), bicicletas y patinetes principalmente.

Poco a poco estos avances han llegado a los motores náuticos para sustituir primero los de pequeña cilindrada. Muchos barcos de recreo ya llevan fueraborda eléctricos, y los motores de proa suelen ser eléctricos.

Motor fueraborda eléctrico Spirit 3CV (1Kw)

También se están realizando prototipos de barcos movidos principalmente por electricidad. Muchos recordamos “La Perla Negra” de Burlakov amarrado en el puerto de Tarragona. La principal innovación del proyecto es la integración de los paneles solares flexibles dentro del tejido de las velas, según Burlakov. Es más, el yate está dotado también de rotores que generan la energía hídrica del agua desplazada durante el movimiento.

The Black Pearl

El catamarán Turanor  fue en 2010 el primero en dar la vuelta al mundo con energía solar. Actualmente hay astilleros especializados en fabricación de barcos eléctricos. Ver Web barcos eléctricos 

Turanor

Y mención aparte merecen los submarinos cuyo principal medio de propulsión es la electricidad, bien generada por sistemas convencionales, generadores nucleares  o AIP (sistemas de generación anaeróbica)

La evolución de los barcos y vehículos eléctricos depende fundamentalmente de la eficiencia y seguridad de las baterías y de la capacidad y rapidez de los sistemas de carga.

Aquí vamos a comentar uno de los elementos que últimamente está levantando más polémica principalmente entre los automóviles y VMP, como son las baterías.

Una batería es un dispositivo que permite acumular energía. Su funcionamiento se basa en la conversión de la energía química almacenada en eléctrica. Una batería tiene tres elementos: un electrodo positivo o ánodo; un electrodo negativo o cátodo; y un electrólito que permite que los iones se muevan entre los electrodos. Los electrodos están separados por un material separador. Este electrólito es un líquido o gel de carácter acido y fácilmente inflamable. Una batería está compuesta por un conjunto de celdas. Por eso comúnmente se le llama pila.


Hasta principios de los años 50 o 60 del siglo XX la mayoría de las baterías eran de plomo ácido (baterías húmedas). Eran baterías que necesitaban mantenimiento pues había que ir reponiendo periódicamente con agua destilada la evaporada en el ácido sulfúrico.

Posteriormente surgieron las baterías sin mantenimiento donde el ácido era sustituido por un gel, también con características ácidas por lo que es corrosivo. Estas baterías de níquel-hierro y níquel-cadmio eran poco eficientes, lentas de cargar y se descargaban fácilmente. Además estas últimas al llevar cadmio eran muy contaminantes.

Las baterías de niquel-metal hidruro sustituyeron el cadmio por un cátodo de hidruro metálico por lo que además de ser mas baratas no contaminan tanto y no tienen tanto efecto memoria.

Las baterías de litio suelen emplear como electrólito una solución de sales de litio encargada de transmitir los iones entre los polos. Luego el electrólito es líquido o gel que facilita el desplazamiento de los iones, con los peligros que eso lleva al ser inflamable.

Estas dos últimas son las que mas se emplean actualmente siendo la tendencia a utilizar baterías de litio, aunque algunos fabricantes como Toyota todavía utiliza, en algunos modelos de vehículos híbridos, baterías de metal-hidruro modificadas de alto rendimiento y seguridad, a la vez que es uno de los principales investigadores en baterías de estado sólido.

Y es aquí cuando entramos en el problema de la seguridad. En general, aunque los fabricantes garantizan una gran seguridad esta no es al 100% ya que se han dado casos de incendiarse  e incluso de explotar las baterías. En algunos sitios se han tomado medidas prohibiendo el embarque de vehículos eléctricos en los ferris. (Ver noticia) o en los transportes urbanos. El Metro de Madrid continuamente recuerda por megafonía la prohibición de embarque con patinetes en sus vagones.

Los principales problemas de las baterías actuales son:

  • La relación peso y tamaño con la capacidad de carga. Son muy pesadas y grandes.
  • La lentitud en la carga. Mucho tiempo para llegar a un 80% o 100% de su carga
  • La seguridad.  Se dan múltiples casos de incendio y explosión
  • El precio, ya que los materiales con con los que están fabricadas son caros y en muchos casos monopolios de unos pocos países.

Las futuras baterías de estado sólido sustituirán ese líquido por un elemento sólido de metal de litio, óxidos cerámicos o vidrios de sulfuro que cumplirá con la misma función, pero con muchas más ventajas. Entre ellas:

  • Menor tamaño ya que la separación de los electrodos será mas delgada y no necesitaran separador.
  • Mayor capacidad ya al tener menos separación entre electrodos las celdas son más delgadas y caben mas en el mismo tamaño.
  • Menor peso y tamaño.
  • Menor tiempo de recarga.
  • Vida útil más larga.
  • Mayor seguridad ya que no explotarán ni arderán.

Si a ello unimos el empleo como el grafeno, los iones de sodio y otros nuevos materiales mas comunes y baratos podemos aventurar que de aquí a pocos años, tres o cuatro como máximo, tendremos coches eléctricos con una autonomía de 1200 km, que se podrán recargar en 5 o 10 minutos hasta un 80% de carga y además estas baterías serán más ligeras, seguras, baratas, y más fáciles de reciclar.

Si extrapolamos la experiencia y avances que de mano de la automoción se están realizando, podemos imaginar cómo serán las baterías aplicadas a la náutica.

Esperando que haya sido interesante 

Un saludo, y siempre "por lo mojao"

Angel Romero Bello





24 junio, 2023

¿QUÉ SEXTANTE COMPRAR?

¿QUÉ SEXTANTE ELEGIR?

Hoy en día todo lo fiamos a la electrónica para posicionarnos, pero no obstante todavía es obligatorio, por lo menos para aquellas embarcaciones que naveguen en “Zona 1”, es decir, que naveguen en zona de navegación ilimitada, el llevar a bordo una serie de elementos que nos permitan situarnos si la electrónica falla. Entre estos elementos esta la obligatoriedad de llevar un sextante (Real Decreto 339/2021,de 18 de mayo. Articulo 12b).

Aparte de la obligatoriedad de llevar el sextante muchos navegantes, aunque no estén obligados, están llevándolo y aprendiendo a usarlo movidos por el romanticismo que supone el navegar siguiendo los sistemas tradicionales y posicionándose por los astros. Además, existen regatas de posicionamiento, como la “Stella Oceani”, en el que la norma principal es posicionarse sin usar la electrónica, lo cual te lleva inevitablemente al manejo de un sextante.

El adquirir un sextante puede ser un quebradero de cabeza para los neófitos, y no es algo baladí, ya que la adquisición de un sextante puede suponer una considerable inversión. Aquí vamos a explicar los diferentes tipos, sus características, pros y contras y precios de referencia (a fecha de la publicación y sin tener en cuenta ofertas que puedan existir). También daremos una serie de orientaciones que os pueden permitir elegir el sextante adecuado. Mencionaremos las principales marcas y fabricantes, pero al final la decisión dependerá siempre de vosotros y de vuestro presupuesto.

Cassens & Plath - Modelo Horizon Ultra

PREGUNTAS Y CARACTERISTICAS QUE DEBEMOS TENER EN CUENTA

1º ¿Nuevo o de segunda mano?

Existe la posibilidad de adquirir un sextante de segunda mano. El primer consejo es que en el caso de adquirir uno usado comprobemos su estado, el uso que le han dado, si tiene golpes, si todos sus elementos están bien y completos, que no tenga reparaciones y que no esté ni oxidado ni con huellas de sal o suciedad. Por internet hay algunas ofertas de usados, pero en el caso de comprarlo será difícil  comprobar su estado y eso es imprescindible. Incluso lo mejor sería verificarlo repitiendo mediciones que tomemos con otro sextante que sabemos que funciona correctamente. Es importante también saber que no está descatalogado y que podremos encontrar repuestos de espejos, filtros y otros elementos que se puedan dañar con su uso. Es un aparato de precisión y como tal requiere un cuidado y mantenimiento. ¡Atención a las ofertas de sextantes decorativos que hay en internet!. Estos son replicas muy bonitas, pero totalmente desaconsejadas.

Sextante decorativo 
Kelvin & Hughes

2º ¿Qué uso le voy a dar?

Si lo quieres para cubrir el expediente y lo necesitas sólo para cumplir el Real Decreto sobre la Seguridad en la Navegación, no necesitaras gastar mucho dinero. Lo mismo, si lo quieres para escuela, para aprendizaje o como iniciación. Distinto es si te gusta la navegación astronómica o lo quieres para regatas de posicionamiento. En ese caso, es preciso invertir un poco más, y no te arrepentirás. Desde luego, todo depende del presupuesto que se tenga.

¿Lo compro de plástico o de metal?

Sea cual sea el modelo, los errores de los sextantes metálicos pueden considerarse despreciables, frente a todos los demás errores que el observador no puede evitar (refracción, imprecisión del horizonte, redondeo en los cálculos...). Se estima que el observador más experimentado que utiliza el mejor sextante no puede exigir, incluso en excelentes condiciones, una precisión promedio superior a 1' de arco (1 milla náutica). También es inútil conceder una importancia exagerada a las medidas de precisión que dan los fabricantes, porque son muy teóricas y se miden en laboratorio en bancos ópticos con láser y en condiciones óptimas, que nada tienen que ver con la realidad en alta mar. Su elección deberá guiarse entonces por otros criterios: el peso, las características de los espejos, el precio, etc.

Los sextantes "plásticos" generalmente permiten una precisión del orden de 5'. Esto es suficiente para la navegación en alta mar y para el entrenamiento, pero pueden ser un poco imprecisos para otros usos. Además, un sextante de plástico requiere revisiones y ajustes más frecuentes que un modelo de metal. La ventaja de los de plástico es que son más económicos y pesan poco y esto se nota mucho cuando debes pasarte un buen rato sujetando el sextante, cuando mides la altura de una meridiana del sol, por ejemplo. También habrá que tener en cuenta que la comodidad de usarlo en un mercante es distinta a cuando estas en un velero de 12 metros con mala mar.

Davis Mark 25 de plástico

4º ¿Con que radio del limbo?

El limbo es el arco graduado donde hago las mediciones. El radio del limbo determina el tamaño del sextante.

Un limbo con un radio grande (mayor a 160 mm) permitirá una lectura más fácil pero es un sextante más voluminoso. Mientras que un aparato con un radio pequeño (menor a 160 mm) será un sextante más compacto, más manejable, pero quizás un poco más difícil de leer. Menos de 140 mm no es aconsejable y si se encuentra alguno de esta medida puede que sean decorativos.

5º ¿Qué peso?

Un sextante bastante pesado (más de 1,5 kg, armazón de latón) proporciona mayor estabilidad y por lo tanto mayor precisión de medición. Por el contrario, el sujetar durante mucho rato un sextante pesado hace que el brazo se canse y al final esto influya en las mediciones.

Un modelo ligero (armazón de aluminio, o plástico) será más cómodo cuando tengamos que estar mucho rato sujetándolo y evitará el dolor del brazo.

Sin embargo, hay que tener en cuenta que con la experiencia y la práctica logramos tomar las medidas cada vez más rápido y, por lo tanto, reducir la fatiga.

También existen accesorios, tipo arnés, que permiten sujetar el sextante frente a la cara descargando el peso del aparato en el cuerpo en lugar de en el brazo.

 6º ¿De qué color?

Para gustos están los colores. Tradicionalmente los sextantes han sido del color del metal, latonados o lacados en negro. Actualmente algunos fabricantes hacen sextantes lacados en blanco, gris o azul. Los colores claros como el blanco o el gris tienen la ventaja de que no absorben la radiación solar y el metal no se calienta al contrario que ocurre con los negros. Aunque los materiales en que se fabrican tienen bajos coeficientes de dilatación, un sextante negro siempre tenderá a dilatar más que uno blanco. Si vas a utilizarlo en sitios donde va a estar expuesto durante largos tiempos a un sol abrasador, mientras tomas una meridiana, por ejemplo, deberías pensar la opción de adquirir uno de color claro.

C&P Bobby Schenk (Blanco)


 7º ¿Qué tipo de visor?

El visor es el tubo, normalmente con óptica de aumento, por el cual se mira. Lo normal es que todos los sextantes se entreguen de serie con un visor de 3,5 (o 4) x 40. Debe reconocerse que este tipo de lente es perfectamente adecuado para la mayoría de los usuarios.

El primer dígito (3,5 o 4) indica el coeficiente de aumento del telescopio. El segundo número (40) indica el diámetro de la lente. Cuanto mayor sea este número, mejor se verá y tendrá más luminosidad, si aumenta uno de los dos números, debe disminuir el otro para que el visor se mantenga a un precio razonable.

Un telescopio de bajo aumento es ideal para las estrellas porque para ver éstas, el aumento es inútil. Es más fácil encontrar y mantener una estrella en el visor con uno de poco aumento que con mucho. Algunos usuarios incluso optan, en este caso, por un tubo vacío sin lente que permita mirar con los dos ojos abiertos, sin aumentos y con luminosidad natural.

Un visor con un aumento mayor (6 o 7) sería más adecuado para observar el sol o hacer mediciones a puntos de la tierra, porque demasiado aumento es más un impedimento.

Algunos visores son compatibles e intercambiables para varias marcas de sextantes. Cassens & Plath,  Astra y Tamaya son compatibles entre ellos y comparten visores que son adaptables a las tres marcas dependiendo del modelo de sextante y visor.

Visor C&P 4x40


8º ¿Los espejos son determinantes?

Los sextantes tienen dos espejos: el espejo de índice y el de horizonte.

El tamaño de los espejos está también está directamente relacionado con la calidad. De hecho, los espejos grandes de buena calidad son más caros de fabricar, pero proporcionan una luminosidad superior y una mayor facilidad para apuntar.

La calidad de los espejos también se mide en por la cara donde tienen el baño que permite la reflexión. Siempre será de más calidad y más luminosos, además de evitar aberraciones ópticas, los espejos que tienen el recubrimiento por el anverso (la cara delantera) que aquellos que la tienen por el reverso (por la cara trasera).

  • Espejos recubiertos en el anverso: proporcionan una imagen mucho más precisa. La imagen se refleja en la superficie frontal.
  • Espejos recubiertos en el reverso: genera una visión de la imagen menos precisa y, además, tiene que atravesar todo el espesor de la lámina para ser reflejada.

El espejo de horizonte es más determinante que el de índice en el uso del sextante.

Espejo horizonte Astra tradicional


9º ¿Espejo horizonte partido o espejo de campo completo?

Los espejos horizonte pueden ser de dos tipos: espejo partido o tradicional y espejo de campo completo.

El espejo tradicional se divide en dos partes, una reflectante y la otra transparente. Teóricamente permite beneficiarse de una mejor luminosidad, pero es más difícil de usar porque es necesario mantener la estrella en un espejo bastante estrecho. Es más difícil encontrar la estrella y evitar perder la visión de esta requiere mucha práctica.

El espejo de vista o campo completo es una evolución reciente en los sextantes. Utiliza el principio del espejo unidireccional. En estos la estrella y el horizonte siempre se mantienen a la vista al mismo tiempo. Sin duda, permite apuntar más fácilmente ya que la superficie del espejo se utiliza enteramente para mantener la estrella, y aunque su luminosidad es muy ligeramente inferior a la del espejo tradicional, esto es solo un defecto en casos extremos (estrellas muy pequeñas, niebla en el horizonte...).

Nuestro consejo: Si aún no estás acostumbrado a uno u otro tipo de espejo y dudas, te aconsejamos que optes por el "Campo completo". Su facilidad de uso es realmente una ventaja para los principiantes.

Algún fabricante como Cassens & Plath han desarrollado espejos que comparten las características de uno u otro sistema. En este caso Cassens & Plath los llama “espejos de visión clara”.

Izda. Tradicional - Dcha.  Campo completo


10º Filtros

Normalmente los sextantes llevan tres filtros de colores en el espejo horizonte y cuatro en el índice. Son preferibles los filtros de cristal sobre los filtros plásticos, y si son polarizados mejor, . Los que traen los sextantes de serie pueden ser suficientes pero la mayoría de fabricantes venden repuestos de mayor o menor filtrado de la luz para remplazar los de serie.

11º Sistemas de corrección del error de índice

Algunos fabricantes permiten que sus apararos corrijan el error de índice poniéndo este a cero con el tambor para no tener que hacer la corrección cuando se hacen los tipeos. También en otros se puede corregir el error de índice regulando con los tornillos del espejo índice, como el Davis Mark 25. Estas opciones son interesantes que las tengan, pero no imprescindibles ya que se puede corregir en los cálculos.

Tambor C&P con sistema corrección


12º Iluminación

La mayoría de los sextantes náuticos están dotados de un sistema de iluminación que permite leer las graduaciones del limbo y del tambor en la oscuridad. Es interesante, aunque no imprescindible, que dispongan de dicha iluminación. El peso de las baterías, dos pilas AAA en la mayoría de los casos, situadas en la empuñadura, apenas incrementa el peso y favorece las lecturas de noche. Eso sí, es imprescindible acordarse de retirarlas cuando se va dejar de utilizarlo por un tiempo para evitar que el sextante se dañe en caso de que se salga el ácido.

Algunos fabricantes lo suministran como accesorio, es el caso de Freiberger. Otros vienen de serie o como opción dependiendo del modelo. 

ACCESORIOS

Es importante que el fabricante disponga de repuestos y accesorios que puedan mejorar o completar las prestaciones del sextante. En muchos casos serán interesantes para prácticas en escuela, como los horizontes artificiales. Algún fabricante da la opción de configurar y elegir los accesorios cuando se compra. Otros te venden una configuración base y dan la opción de comprar los accesorios aparte. En cualquier caso supone un desembolso extra de dinero que muchas veces merecerá la pena.

Entre otros podemos encontrar:

Horizontes artificiales de reflexión.

Interesantes para hacer practicas en tierra. Permiten practicar en sitios donde no se ve el horizonte marino, pero no son utilizables en un barco ya que el balanceo del barco hace que pierdan la horizontalidad. Son una superficie de líquido o espejo que se nivela totalmente y refleja el sol o estrella que se observa. El ángulo que da siempre es del doble de la altura observada.

Horizontes artificiales  Davis y Freiberger


Horizontes artificiales de burbuja.

El horizonte de navegación artificial es adecuado para medir la altitud celeste con el sextante sin vista de horizonte natural. Por ejemplo, de noche cerrada, con niebla de superficie, o para navegación terrestre o aérea. También es muy adecuado para fines de entrenamiento.

Consiste en un telescopio que sustituye al visor estándar y permite ver en un nivel de burbuja cuando el sextante se encuentra horizontal. El principio es un nivel de burbuja que esta insertado en la trayectoria del haz óptico. Una cruz y la burbuja aparecen frente a un fondo rojo iluminado. Suelen requerir de iluminación interna. Suelen ser mas caros que un visor óptico.

Hay horizontes de burbuja más sencillos y baratos para uso en practicas pero se suelen desaconsejar para uso en navegación.

Horizonte de burbuja C&P para navegación 


Niveles de prisma o de inclinación.

Es un dispositivo que permite  determinar si el sextante no está inclinado. En caso de inclinar el sextante el horizonte que se ve a través del prisma no está alineado con el horizonte real.

En la práctica para determinar que el sextante esta vertical se inclina éste de un lado a otro “tagenteando” el astro sobre el horizonte. Mediante este prisma cuando se inclina el sextante, la línea del horizonte vista a través del prisma aparece desplazada de la que se ve directamente. Cuando se ve sin desplazar indica que esta vertical y la medición es correcta.




Nivel de inclinación C&P



Vista con el nivel de inclinación

Filtros y visores

La mayoría de los fabricantes dan la posibilidad de adquirir filtros de diferentes colores para sustituir los que vienen de serie, en caso de que se rompan o cuando queremos personalizar los colores.

También existe la opción de adquirir diferentes visores o grupos ópticos como reemplazo del que viene de serie, normalmente el 4x40 que es el mas apropiado para navegación. Los visores de más aumento, como 7x35,  dificultan el mantenerla la imagen a la vista. Como ya hemos comentado antes muchos son compatibles entre diferentes fabricantes. Astra, C&P y Tamaya tienen componentes compatibles entre si.

Visor 7x35 Tamaya 

Arnés

Para no tener que estar soportando el peso del sextante sobre el brazo existen algunos fabricantes tienen como accesorio un arnés que hace recaer el peso sobre el cuello y pecho del observador.

Arnés C&P


Cajas y herramientas.

Al adquirir el sextante normalmente nos van a suministrar una caja estándar de madera o plástico, pero seguramente podremos pedir que nos lo suministren con cajas especiales antigolpes, estancas e insumergibles.

También existen toda una serie de herramientas para el reglaje y mantenimiento, destornilladores y llaves, aceites, paños para la limpieza, etc. De serie, incluido en el precio, se suele entregar un kit de mantenimiento.

 COMPARATIVA  (VER TABLA EN PDF)

(*) El precio es orientativo a fecha junio 2023. También depende de las ofertas del distribuidor, extras, impuestos, portes, etc.

DAVIS

Fabricante de USA que hace tres modelos en plástico. Muy económicos y ligeros. El Mark 3 es un sextante orientado principalmente para educación. Los otros dos el Mark 15 y el Mark 25 se pueden usar como sextantes náuticos para iniciación y escuelas náuticas.

La principal diferencia entre el Mark 15 y el 25, aparte del color y el precio es que el Mark 25 es de espejo completo y con iluminación. Dentro de su sencillez de fabricación son bastante fiables y se pueden utilizar como sextantes náuticos. Ambos vienen en estuches de plástico con espuma y traen visores ópticos de aumento y tubo vacio. Por la diferencia de precio merece más la pena y es más completo el Mark 25. Con los tornillos del espejo índice se puede corregir el error de índice.

https://www.davisinstruments.com/collections/navigation-and-charting

ASTRA

Fabricado en China es uno de los sextantes mas vendidos debido a su precio. Buena relación calidad precio. Fácil de encontrar recambios. Tiene accesorios como el nivel de burbuja. Se ofrece con dos tipos de visores 3,5x40 y 7x35. Para algunos modelos es opcional. Los visores chinos de esta marca son de calidad excelente.

https://www.celestaire.com/product-category/marine-sextants/astra-iiib/

 FREIBERGER

Casa alemana. Calidad similar a Astra. Tiene dos modelos el Yach , de tamaño pequeño (142mm) y ligero con visor de 3,2x30 y el Drum de 170 mm con visor intercambiable de 4x40 y otro de 8x30 opcional. El sistema de iluminación es opcional

https://fpm.de/index.php?option=com_virtuemart&view=category&virtuemart_category_id=2&Itemid=264&lang=en

 CASSENS & PLATH

Fabricación artesanal alemana. Uno de los mejores sextantes que existen. De gran calidad, de mucha precisión. Tiene muchos modelos con diferentes características como de espejo completo y tradicional, con diferentes precios y con gran cantidad de accesorios. Cada modelo da varias opciones de configuración con complementos a gusto del usuario. Utiliza los mismos visores y lentes que Astra, de excelente calidad.

https://www.cassens-plath.de/en/sextants/

 TAMAYA

Prestigiosa y antigua marca de sextantes. Actualmente fabrica dos modelos el MS-733 y el MS-833, muy similares en características y precios. Aunque es un buen sextante la relación de calidad precio no es la mejor.

https://tamaya-technics.com/en/sextant/

 

Enlaces de interés

https://fpm.de/index.php?option=com_virtuemart&view=category&virtuemart_category_id=2&Itemid=264&lang=en

https://navastro.fr/

https://www.celestaire.com/shop/

https://www.depositohidrografico.com/b2c/productos/1/1/ref-2/sextantes

https://www.francobordo.com/search.php?description=1&auto=1&buscar=sextantes

Sextante antiguo (Museo de Bayona)

Espero que éste artículo haya sido útil e interesante.
Un saludo y siempre por lo "mojao"
Angel Romero Bello








17 mayo, 2023

INSTRUMENTOS DE NAVEGACIÓN (CAPÍTULO VII): SEXTANTE (Parte 2) Funcionamiento y modo de empleo

 SEXTANTE: Funcionamiento y modo de empleo

Para medir la altura del sol o de una estrella, lo primero que haremos es colocar la alidada en    0° grados y enfilar a través del visor el horizonte.


Como apreciamos en la figura a través del visor veremos una línea continua de horizonte en el espejo pequeño tanto por la parte izquierda (cristal), como por la derecha (espejo), imagen reflejada del espejo mayor.

Puede ser que el sextante no considere la línea del horizonte como el grado cero. Si es así, se debe corregir la medición del ángulo del objeto observado en igual medida que el error de la línea de horizonte, el cual se denomina “error de índice o instrumental”. Este error de índice (ei) puede ser positivo o negativo.

 




Seguidamente sin dejar de enfilar el horizonte, movemos la alidada para bajar el reflejo del Sol en el horizonte del espejo menor, tal y como se aprecia en la figura.

Efectuaremos la medición del ángulo  sobre el limbo del sextante con el nonius de la alidada. Recordemos que:

                        2Ꝕ = a


Los grados de elevación estarán en el centro de la barra de índice, dentro de una ventana sobre el arco del sextante, los minutos y segundos pueden leerse en las graduaciones de la manilla del micrómetro.

Es muy importante registrar inmediatamente la hora a la que hace la medición en horas minutos y segundos.

Se debe corregir el ángulo medido ,según sea la posición y el objeto del que queremos calcular su altura, con las siguientes correcciones (lo veremos en un caso práctico).

  •  Corrección de error de índice (ei). Este error es debido a que el sextante no detecta el horizonte como grado cero, sino como una cantidad superior (positivo) o inferior (negativo)
  •  Corrección de depresión del horizonte (D): Esta corrección es debida a la posición del observador sobre el nivel del mar.

La altura verdadera, es la que tiene el astro respecto al horizonte astronómico o verdadero.

Considerando que la luz procedente de las estrellas es paralela a la que llega al centro de la tierra, vemos que altura se puede medir en ambos lugares sin que su valor varíe.

Cuando hacemos una medición con el sextante la realizamos con respecto al horizonte de mar y no con respecto al aparente.

Así, a la altura medida con el sextante, una vez corregida con el error de índice, debe aplicarse la corrección de depresión debido a la altura del observador.


La depresión depende de la elevación del observado, y siempre será negativa. La corrección por depresión es proporcionada por Almanaque Náutico en su página 387.

  • Corrección por refracción (R): Los rayos de luz cuando atraviesan la atmósfera se refractan, sufriendo su trayectoria una desviación, de manera que se curvan hacia la superficie de la Tierra, haciendo que el objeto observado tenga una posición aparente, que siempre es una posición más elevada que la real. Esta corrección por refracción astronómica siempre es negativa y la encontramos en Almanaque Náutico en su página 387.
  • Corrección por paralaje (P): Esta corrección solo se aplica a los astros más cercanos (sol y luna). No se cumple que la medición de la altura sea la misma en el horizonte aparente que en el astronómico, como se aprecia en la figura.


P es el ángulo paralaje del astro y su corrección es siempre positiva ya que:

                 av = ao + P

En el Anuario Náutico pág. 387 hay que entrar con la altura aparente para aplicar esta corrección.

 ·  Corrección por semidiámetro (SD): Las mediciones se realizan al centro del astro, pero cuando las realizamos al sol o luna, al tener un cuerpo visible con un diámetro aparente considerable, es difícil realizar la medida al centro con cierta precisión, por lo que se realizan las mediciones a los limbos superior o inferior, por lo que es necesario aplicar una corrección,  que será negativa si realizamos la medición al limbo superior y positiva si lo hacemos al inferior.

 


Uso del sextante. Toma de datos

Toda toma de altura debe ir acompañada de la hora, lo más exacta posible, en que se realizó dicha lectura (es buena costumbre empezar a anotarla por los segundos, minutos, horas).

Hay que tener presente que las mediciones tanto de altura como de la hora en que se realizan. deben ser lo más precisas posibles, ya que  un error de 4 segundos nos dará una diferencia de 1 milla en situación geográfica, y un error en 1 grado también nos dará una milla de diferencia en situación.

Los elementos que intervienen en el problema clásico de la navegación astronómica son:

  1. Disponer inicialmente de una situación de estima SE: le, Le
  2. En ese momento determinado realizamos una o varias observaciones a un astro obteniendo una altura instrumental ai, que debe ir asociada al error instrumental del sextante ei.
  3. En el preciso instante en el que se toma el valor de una altura con un cronometro, debemos tomar la hora en tiempo universal TU, con precisión de segundos.
  4. Con los datos obtenidos haremos las correcciones marcadas en el Almanaque Náutico. El Almanaque Náutico dispone de los datos relativos a la posición de los astros en relación a su exacta medida de tiempo, obteniendo la av.
  5. El tratamiento de los datos extraídos del AN permite obtener la altura calculada, correspondiente a la situación de estima, conociendo entonces la diferencia de alturas Δa..

Ejemplo, procedamos a tomar unas alturas del SOL en un breve espacio de tiempo.


Plasmándolas en gráfico.



A la vista del grafico vemos que la tercera observación se desplaza de una imaginaria línea recta que uniría todas las mediciones, lo que nos indica que posiblemente tengamos error en ella, por lo procederíamos a su eliminación quedándonos con las demás.

De esta forma tendríamos cuatro mediciones, que como vemos en la gráfica se mantienen dentro de una alineación y calculamos valor medio de altura y hora:

 ao = 48°15.33´

Recordemos que hemos corregido las alturas instrumentales tomadas con el error de índice. En caso del ejemplo ei=+2, dcha, se ha despreciado una medición y calculado la media de las mediciones tomadas, resultando la ao, y se han realizado con una altura de observador de 3 m (lo normal en un barco deportivo) y que fueron realizadas el 27 de julio del 2015.

Con este valor vamos a trabajar con el AN (del 2015) en su página 387, en la que tenemos las correcciones para obtener la altura verdadera del SOL limbo inferior. En la tabla A corrección por depresión de horizonte. En la B las de semidiámetro, refracción y paralaje y una tabla adicional correspondiente al año y mes en que se realiza la medición.


Operativa para las correcciones:

  1. En la tabla A buscamos lo =3m, nos da un valor de -3.1
  2. En la tabla B por la altura observada nos da un valor de 15.20. (Nota: En las ediciones del AN a partir del 2016 la tabla B indica que hay que entrar con la altura aparente)
  3. En tabla corrección adicional para 27-7-15, nos da un valor de -0.25 (interpolando)

 Tipeo:


Altura verdadera = 48°27.65`


Sextante Davis Mark 25


18 marzo, 2023

INSTRUMENTOS DE NAVEGACIÓN (CAPÍTULO VII): SEXTANTE (PARTE 1) - FUNDAMENTOS

 SEXTANTE: Historia y fundamentos

Durante siglos se han utilizado diversos instrumentos para determinar altura de los astros y planetas y de este modo determinar su situación: ballestilla, cuadrante de Davis, astrolabio, octante, quintante, sextante …etc

Hasta la aparición de los sistemas de posicionamiento satelital, el sextante junto con unas tablas (almanaque) y un cronómetro, era el único aparato con el que se podría saber una posición en el mar sin referencias terrestres.


 En el siglo XVIII John Hadley inventó el octante, más tarde John Bird, realizó una serie de mejoras modificándolo hasta convertirlo en el actual sextante, también se le atribuyen otras modificaciones al estadounidienseThomas Goderey.

OCTANTE

El octante de Hadley, era un instrumento compuesto por un sector circular de 45º, cuyos radios estaban provistos de un anteojo y dos espejos, mediante esta disposición, lograba reunir en una sola línea de mira dos objetos: el astro y el horizonte.

El sector del octante de 45° permitía medir ángulos de altura de astros hasta 90°, pero la necesidad de medir mayores distancias angulares hizo que se modificase el octante, dando lugar a dos nuevos instrumentos el quintante y el sextante.

Contador visitas